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Abstract
Equilibrium configurations for smectic A liquid crystals in a ‘bookshelf’ geometry are
determined from a nonlinear continuum model under strong and weak anchoring conditions at
the boundary for the usual director n. Natural boundary conditions are derived for n and the
smectic layer normal a when a preferred director orientation np, which generally induces a
director pretilt, is prescribed on the boundaries. Two key aspects are examined via the nonlinear
equilibrium equations: the separation of n from a and the influence of weak anchoring. The
orientations of n and a relative to np may differ significantly and depend very much upon the
magnitude of the anchoring strength. These results from a nonlinear theory are natural and
novel developments of previous classical linearized models for which n ≡ a. Comparisons are
also drawn between solutions for strong and weak anchoring conditions.

1. Introduction

Liquid crystals are anisotropic fluids that consist of rod-like
molecules which have a preferred local average orientation.
This average orientation is described by the unit vector n,
commonly called the director. The molecular alignment in
smectic liquid crystals leads to a layered structure in which
n is parallel to the local layer normal a. This is what is
known as the smectic A (SmA) phase of liquid crystals and
is shown schematically in figure 1(a) where the short bold
lines represent the average molecular arrangement. However,
it is known that n and a may separate close to the idealized
SmA phase, leading to a local structure that is called the
smectic C (SmC) liquid crystal phase where the angle between
the director and the layer normal, denoted by ϑ , is non-zero
and the director is locally constrained to lie on the surface
of a fictitious cone having an axis parallel to a, as shown in
figure 1(b). The angle ϑ , also called the smectic cone angle,
is usually temperature dependent but it may also vary due to
competition between preferred bulk and surface alignments
and smectic layer compressional effects, as will be discussed
in this paper. The idealized SmA liquid crystal phase is said
to occur when ϑ ≡ 0, in which case n and a coincide as in

figure 1(a). In this paper we shall be concerned principally
with liquid crystals that have an inherent desire to adopt the
idealized SmA phase and we shall concentrate on how different
boundary conditions can influence the orientation of the local
layer structure and director alignment, especially as n and a
separate close to the boundaries of a given sample.

When the SmC phase is present it is often necessary to
introduce the unit orthogonal projection of n onto the local
smectic planes, denoted by c, so that the local orientation of
the director is given by n = cos ϑa + sin ϑc, as shown in
figure 1(a). The orientation angle φ of c, measured with respect
to some fixed axis within the local smectic plane, is usually
introduced and a complete description of the orientation n
in SmC can then be given via the two orientation angles ϑ

and φ because knowledge about the orientation of a and c is
then equivalent to that for the orientation of n. Nevertheless,
in a straightforward geometrical set-up, such as that to be
introduced here, the orientation angle φ can be considered
as fixed so that we can effectively set φ ≡ 0. This is an
assumption that is thought to be a good approximation in
the description of planar aligned smectic liquid crystals when
they are close to the SmA phase, especially when flow is
neglected [1, 2]. For more general details on the physics and
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Figure 1. (a) An idealized planar layered SmA liquid crystal. The
rod-like molecules are arranged in equidistant parallel layers as
shown. The director n, represented by the short bold lines, and layer
normal a coincide everywhere. (b) Fluctuation in the alignment of n
and a occur due to competing boundary conditions or perturbations.
Locally, n and a may separate by an angle ϑ to form a SmC phase
where the director may align along the surface of a fictitious cone.
The unit orthogonal projection of n onto the local smectic plane is
denoted by c which allows an orientation angle φ to be defined
relative to some fixed axis within the smectic planes. Both a and n
may vary in space.

mathematical descriptions of SmA and SmC liquid crystals the
reader is referred to the books by de Gennes and Prost [2] and
Stewart [3].

The local planar layer structure of smectic liquid crystals
may be described by a scalar function �, whereby the layer
normal is always given by a = ∇�/|∇�|. For example, if
uniformly aligned planar smectic layers, such as those depicted
in figure 1(a), lie parallel to the xy plane then � = z leads
to a = (0, 0, 1) in the usual Cartesian description. It is
often convenient to employ both a and � when formulating
mathematical descriptions. In equilibrium configurations it
is known that the Oseen condition [4], ∇ × a = 0, holds
when the smectic layers exhibit no dislocations. It has been
common practice to assume that n and a always coincide
when modelling fluctuations or changes to the alignment of
SmA samples [2, 3]. However, there has been a resurgence
of interest in the continuum modelling of SmA liquid crystals
when, in a departure from the classical continuum description,
n and a may separate [5–10] so that they, or equivalently, n
and �, can provide a more realistic description of the director
alignment. This also requires, in general, a relaxation of
the Oseen condition when considering general disturbances or
imposed realignments to the director and smectic layers. The
Oseen condition will not be imposed here, although it should
be noted that the theory below does not exclude the possibility
that in special cases ∇ × a may vanish over some region.
The director orientation on the boundary of many samples
can be considered as being fixed in a preferred orientation
that is physically determined by an alignment technique, such
as that discussed in [1]; such a fixed boundary condition is
called strong anchoring and the director will always align on
the boundary at the preferred surface alignment no matter

what alignment may be induced in the bulk of the sample.
More realistic boundary conditions can be modelled by what is
known as weak anchoring. In this case the director alignment
on the boundary is allowed to vary because of a competition
between the director alignment in the bulk and the preferred
surface alignment on the boundary; the director is thus weakly
anchored to the boundary and the flexibility of the director
alignment at the surface is controlled by a finite anchoring
strength that is linked to a surface energy term. As the
magnitude of the anchoring strength increases to infinity we
recover the strong anchoring boundary conditions and for
this reason strong anchoring is also called infinite anchoring.
We shall look at strong and weak anchoring formulations
and suppose in all cases that the director has a preferred
alignment angle on the boundaries, to be introduced below.
In all anchoring situations, n and a may vary significantly
relative to each other, especially near the sample boundaries.
A preferred surface alignment for the director will always be
supposed while no imposed boundary conditions will be made
upon the smectic layer orientation at the boundaries. The
layer alignment at the boundaries will be calculated via the
usual natural boundary conditions that arise in the classical
calculus of variations so that the layers will adopt an alignment
at the boundaries that follows naturally from any imposed
preferred surface director alignment. This supplements the
work of Stewart [10] where strong anchoring of the director
and a supposed fixed smectic layer alignment at the boundaries
were assumed in some preliminary studies of equilibrium
configurations of SmA. The two key features of this present
paper are, firstly, the consideration of equilibrium solutions for
the director and smectic layers when n no longer necessarily
coincides with a and, secondly, a comparison between the
results for strong and weak anchoring of the director. In
all cases, natural boundary conditions are imposed upon the
smectic layer alignment.

We consider a sample of ‘bookshelf’ aligned SmA liquid
crystal confined between boundary plates as shown in figure 2
below. The mathematical model, governing equilibrium
equations and boundary conditions are discussed in section 2,
together with elementary models for the bulk and surface
energy densities. The special case of strong anchoring of the
director with natural boundary conditions for the smectic layer
tilt is discussed in section 3 while solutions for weak anchoring
are investigated in section 4. A discussion of the results is given
in section 5.

2. Model and equilibrium equations

Equilibrium configurations for bounded samples of SmA will
be considered and the equilibrium equations for n and a will
be obtained by minimizing the associated energy consisting of
bulk and surface contributions. A bulk energy density, w, will
be employed that is based upon the work of Auernhammer et al
[5, 6, 11], Weinan [12], Ribotta and Durand [7], Soddemann
et al [8] and Stewart [9]. It has the general form, when n is
close to a,

w = 1
2 K n

1 (∇ · n)2 + 1
2 K a

1 (∇ · a)2 + 1
2 B0 (|∇�| + n · a − 2 )2

+ 1
2 B1{1 − (n · a)2}, (2.1)
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Figure 2. (a) The idealized bookshelf SmA alignment when the director n, represented by the short bold lines, coincides with the layer normal
a and θ0 = θp = δ0 = 0. The sample is confined between boundary plates located at z = 0 and d . (b) The boundary conditions for the director
and layer normal are dictated by a competition between elastic effects in the bulk and the preferred director alignment θp at the boundary. For
weak anchoring, the value of θ on the boundary, denoted by θ0, will generally differ from θp. The smectic layer tilt at the boundary is δ0 and is
determined from classical natural boundary conditions. (c) Definitions of the orientation angles θ and δ for the director n and smectic layer
normal a. The preferred director orientation on the boundary, np, makes an angle θp, determined by physical alignment processes.

with the total bulk energy being given by the integral of w

over the sample volume. The energy density w in (2.1) is
invariant under the simultaneous changes in sign n → −n
and a → −a, which is equivalent to invariance under the
simultaneous changes n → −n and ∇� → −∇�. The first
term on the right-hand side of (2.1) represents the elastic splay
deformation of the director n while the second term describes
the bending of the smectic layers; both K n

1 and K a
1 are positive

elastic constants. The third term is related to smectic layer
compression and is an extended version of that which is known
from the classical descriptions of SmA, based upon the results
in [2, 6, 12]; B0 is the positive layer compression constant.
The fourth term accounts for the coupling between n and a
with the positive constant B1 having dimensions of energy per
unit volume: in an equilibrium state this energy contribution
is minimized when n and a are parallel. This term can also be
written as 1

2 B1(n×a)2 because n and a are unit vectors, as used
in [5, 6, 8]. The above model does not exclude the possibility
that n and a may coincide at particular locations or regions.

In the conventional description of SmA the free energy
density consists of layer compression and splay elasticity
because the classical twist elasticity is necessarily absent while
the bend elasticity contribution is considered as negligible.
This approach has, in the first instance, led to the elementary
energy density contributions appearing in (2.1) where the terms
related to the bend elasticity of n and a have been neglected.
Ribotta and Durand [7] have neglected bend in their model
because the director and smectic layers are considered to be
more sensitive to spatial variations in directions parallel to
the smectic layers rather than along the smectic layer normal
direction. A justification for omitting the bend term when a =
n has also been outlined by Weinan [12]. However, it should be
mentioned that the omission of bend is not generally justified,
especially near screw dislocations, as has been mentioned by
Pleiner [13], who has noted that for large gradients the bend

term can become comparable to the other gradient energy
terms and can therefore no longer be considered negligible.
Nevertheless, for the model introduced here we follow the
initial procedures adopted by previous authors [5–8] and
assume that bend will not be a dominant feature compared
to splay, layer compression and the possible separation of n
and a. A more detailed investigation involving the inclusion of
bend is possible by suitably amending the energy density and
following the numerical procedures that have been used below.

A weak anchoring surface energy density can be
introduced in the form of Rapini–Papoular [3, 14]

ws = 1
2τ0ω(n × np)

2 = 1
2τ0ω{1 − (n · np)

2}, (2.2)

where τ0 has dimensions of surface tension (J m−2), ω > 0
is a dimensionless measure of the weak anchoring strength
and np is the preferred director alignment at the boundary
surface, usually prescribed by mechanical or surface treatment
procedures. The total surface energy is the integral of ws over
the surface of the sample. In this formulation, the surface
energy is minimized when n is parallel to np. The total energy
per unit volume is

W =
∫

	

w d	 +
∫

S
ws dS, (2.3)

where 	 is the sample volume and S is its surface.
We shall examine what is commonly called the

‘bookshelf’ alignment of SmA. In a perfectly aligned sample
of bookshelf SmA the director is parallel to the smectic
layer normal and the planar smectic layers themselves are
arranged in a bookshelf formation perpendicular to parallel
planar boundaries, as shown in figure 2(a). Such an idealized
alignment is only possible when np = n = a, which is
generally not the case. It will be assumed that the director
n and the smectic layer normal a are uniform in the x and y

3
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directions so that their respective orientation angles θ and δ,
measured with respect to the x-axis as shown in figure 2(c),
are functions of z only, i.e. θ = θ(z) and δ = δ(z). Note
that the boundary orientation angle θp of the preferred director
alignment np is fixed at the boundary. The anticipated director
and smectic layer alignment in a bookshelf-type geometry
across a sample of depth d in the z-direction is shown
schematically in figure 2(b). The director n and the layer
representation � may then assume the forms [10]

n = (cos θ(z), 0, sin θ(z)), (2.4)

�(x, z) = x +
∫ z

z0

tan δ(t) dt, (2.5)

where z0 is an arbitrary constant. It follows immediately that

∇� = (1, 0, tan δ(z)), |∇�| = sec δ(z) (2.6)

a = ∇�

|∇�| = (cos δ(z), 0, sin δ(z)), (2.7)

n · a = cos(θ(z) − δ(z)). (2.8)

It will be supposed that θ and δ will only take values strictly
lying between −π/2 and π/2. From the expected symmetry of
the problem, we look for solutions of the form

θ(z) = −θ(d − z), 0 � z � d, (2.9)

δ(z) = −δ(d − z), 0 � z � d, (2.10)

θ ′(0) = θ ′(d), δ′(0) = δ′(d), (2.11)

where a prime denotes the differentiation with respect to z. The
boundary conditions will then lead to

θ(0) = θ0, δ(0) = δ0,

θ(d) = −θ0, δ(d) = −δ0,
(2.12)

for constant angles θ0 and δ0 that have to be determined from
the minimization of the total energy when a given preferred
orientation np for the director at the boundary is prescribed
(see figure 2). These constant angles at the boundaries will
be determined as part of the solution process and, despite
being influenced by all the material parameters, they will be
governed primarily by the magnitude of the weak anchoring
strength τ0ω and the preferred director orientation angle θp

at the boundaries. In general, θ0 �= θp for weak anchoring
whereas θ0 = θp under any strong anchoring assumptions.

The bulk energy density (2.1) becomes

w = 1
2 K n

1 (θ ′)2 cos2 θ + 1
2 K a

1 (δ′)2 cos2 δ

+ 1
2 B0[sec δ + cos(θ − δ) − 2]2 + 1

2 B1 sin2(θ − δ).

(2.13)

The preferred director orientation at the boundaries may be
written as

n−
p = (cos θp, 0, sin θp), n+

p = (cos θp, 0,− sin θp),

(2.14)
where θp is a fixed angle measured relative to the x-axis. The
minus index refers to the preferred alignment angle of the

director at the lower boundary z = 0 while the plus index
refers to the preferred orientation at z = d . We remark that
these preferred alignments, under weak anchoring, will never
generally be achieved by the director because of competition
with the minimization of the bulk energy. On the boundaries,
given the conditions imposed upon θ in equation (2.12) and the
forms for n±

p ,

(n × n−
p )2 = sin2(θ(0) − θp),

(n × n+
p )2 = sin2(θ(d) + θp).

(2.15)

Thus, from (2.12) and (2.15), the surface energy density on
each boundary is given by

ws = 1
2τ0ω sin2(θ0 − θp), (2.16)

since it easily seen that

ws(θ(0), θp) = ws(θ(d),−θp), (2.17)

and this means that the total surface energy per unit area in the
xy-plane on the boundaries (i.e. the surface integral appearing
in (2.3)) for the problem described here is simply 2ws.

We shall minimize the functional W over a sample of
depth d in the z-direction and of unit cross-sectional area in
the xy-plane. We have

W =
∫

	

w d	 +
∫

S
ws dS

= 1
2

∫ d

0
{K n

1 (θ ′)2 cos2 θ + K a
1 (δ′)2 cos2 δ

+ B0[sec δ + cos(θ − δ) − 2]2

+ B1 sin2(θ − δ)} dz + τ0ω sin2(θ0 − θp), (2.18)

subject to the aforementioned conditions in equations (2.9)–
(2.12). Recall that θp is prescribed while θ0 and δ0 are to
be determined. The coupled equilibrium equations for θ(z)
and δ(z) in the bulk are identical to those previously obtained
in [10] via the usual Euler–Lagrange equations, namely,

K n
1 [θ ′′ cos2 θ − (θ ′)2 sin θ cos θ ]

+ B0[sec δ + cos(θ − δ) − 2] sin(θ − δ)

− B1 sin(θ − δ) cos(θ − δ) = 0, (2.19)

K a
1 [δ′′ cos2 δ − (δ′)2 sin δ cos δ]

− B0[sec δ + cos(θ − δ) − 2]
× [sec δ tan δ + sin(θ − δ)]
+ B1 sin(θ − δ) cos(θ − δ) = 0, (2.20)

with θ and δ satisfying the boundary requirements in
equation (2.12). The additional boundary conditions for weak
anchoring of the director are well known in such circumstances
(see, for example, [3, p 55] or [15] in the context of liquid
crystals, or [16] in general) and are given by

∂w

∂θ, j
ν j + ∂ws

∂θ
= 0, (2.21)

∂w

∂δ, j
ν j + ∂ws

∂δ
= 0, (2.22)
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where ν is the outward normal to the boundary surfaces: in this
present situation ν = (0, 0,−1) at z = 0 and ν = (0, 0, 1) at
z = d . Inserting the form given explicitly in equation (2.15)
into (2.13) and (2.16) leads to the additional requirements

2K n
1 θ ′(0) cos2 θ0 + τ0ω sin[2(θp − θ0)] = 0,

δ′(0) = 0,
(2.23)

at z = 0, given that in general we expect δ �= ±π/2
(otherwise we would have the smectic layers parallel to the
boundaries at the boundary surfaces). From the definition of
n±

p in equation (2.14), coupled with taking the appropriate
derivatives in θ in equation (2.15) and then applying the
boundary conditions θ ′(0) = θ ′(d) and θ(0) = −θ(d),
similar calculations reveal that the additional boundary
conditions (2.23) must also hold at z = d .

2.1. The equations to be solved

It is expected that the director and the layer normal will
accommodate themselves, via competition between preferred
surface and bulk alignments, to be at the constant angles θ0

and δ0, respectively, on the boundaries and the determination
of these angles is part of the problem to be solved. If we impose
the aforementioned symmetry upon the solution then we may
solve the system over the region 0 � z � d/2 and obtain
the solution for d/2 � z � d via symmetry. The appropriate
boundary conditions for our problem are then

2K n
1 θ ′(0) cos2 θ0 + τ0ω sin[2(θp − θ0)] = 0,

θ(d/2) = 0, δ(d/2) = 0, δ′(0) = 0.
(2.24)

Thus, in summary, we need to solve the equilibrium
equations (2.19) and (2.20) subject to the boundary conditions
stated in equations (2.24) for prescribed values of the preferred
surface director alignment angle θp and the remaining material
parameters K n

1 , K a
1 , B0, B1 and τ0ω.

The equations (2.19), (2.20) and (2.24) can be non-
dimensionalized by introducing the typical length scale λ

([2, p 344]), the dimensionless coupling constants B and κ ,
dimensionless anchoring strength τ and variable z̄ by setting

λ =
√

K n
1

B0
, B = B1

B0
, κ = K a

1

K n
1

τ = λτ0ω

K n
1

, z̄ = z

λ
, d̄ = d

λ
.

(2.25)

The constants B and κ represent dimensionless measures of the
anisotropy in the coupling and elastic constants, respectively.
It is known that λ is often of the dimensions of the smectic
interlayer distance [2]. Doing so reveals that they can be
written as

θ ′′ cos2 θ − (θ ′)2 sin θ cos θ + [sec δ + cos(θ − δ) − 2]

× sin(θ − δ) − B sin(θ − δ) cos(θ − δ) = 0, (2.26)

κ
[
δ′′ cos2 δ − (δ′)2 sin δ cos δ

] − [sec δ + cos(θ − δ) − 2]

× [sec δ tan δ + sin(θ − δ)]

+ B sin(θ − δ) cos(θ − δ) = 0, (2.27)

where a prime now denotes differentiation with respect to z̄.
The relevant boundary conditions become

2θ ′(0) cos2 θ0 + τ sin[2(θp − θ0)] = 0, θ(d̄/2) = 0,

δ(d̄/2) = 0, δ′(0) = 0.

(2.28)
The weak anchoring problem has now been reduced to finding
the solutions θ(z̄) and δ(z̄) to equations (2.26) and (2.27) with
the boundary requirements (2.28).

It is expected [7] that B1 should be comparable (perhaps
smaller) to the more familiar compression constant B0. We
shall also suppose that K a

1 is similar in magnitude to K n
1 .

Typical approximate values for the material parameters in
liquid crystals may be taken as [3, 17]

K n
1 = 10−11 N, τ0ω = 10−5 J m−2. (2.29)

The length scale λ is often around 20 Å [2], which leads to an
estimate of B0 ∼ 2.5 × 106 N m−2. For a thin sample of depth
d = 2 μm we are led to consider d̄ = 1000 (it is common
in experiments for d to be around 2 ∼ 10 μm, for example
d = 3.5 μm in the experiment by Elston [1]). Further, with
the estimates in (2.29), we also arrive at the approximation
τ ∼ 10−3 as a possible typical estimate for the dimensionless
anchoring strength. A typical value for θp that may be selected
is around π/6, as has been reported from experiments [1]. We
therefore choose, motivated by the results in [10], to base our
work around the dimensionless parameters

B = 1, κ = 1, d̄ = 1000, τ = 10−3,

θp = π

6
.

(2.30)
Nevertheless, we shall also look at the influence upon various
properties of the solutions as the parameters B , κ and τ vary in
differing contexts.

2.2. A special case: the strong anchoring problem

In the strong anchoring case only the bulk energy is of interest
because the anchoring strength τ becomes infinite and θ(0)

is fixed at the preferred surface alignment angle θp. The
equilibrium equations are again given by equations (2.26)
and (2.27) while the boundary conditions for θ (again taken
over the half-depth of the sample) are replaced by

θ(0) ≡ θ0 = θp, θ(d̄/2) = 0. (2.31)

From symmetry, δ(d̄/2) = 0, as before, but the boundary
condition at z = 0 must be obtained by the usual natural
boundary condition requirement [18, p 94], namely,

∂w

∂δ′

∣∣∣∣
z̄=0+

= 0. (2.32)

The boundary conditions for δ are therefore

δ′(0) = 0, δ(d̄/2) = 0, (2.33)

and are thus the same as in the weak anchoring case.

5
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We shall begin by examining the strong anchoring case
in order to draw comparisons with the weak anchoring results
that will follow. We remark that when δ(0) = δ0 is also
prescribed or is known, that is, if strong anchoring of the
layer alignment is given in addition to strong anchoring of
the director, then the strong anchoring problem reduces to that
discussed extensively by Stewart [10]. The strong anchoring
problem solved in the next Section allows the solution for δ to
select its natural boundary condition at z̄ = 0 so that the only
boundary conditions that need to be supplied are those for θ ,
i.e. the value of θp.

3. Solutions for strong anchoring

For strong anchoring of the director, equations (2.26)
and (2.27) with the boundary conditions (2.31) and (2.33)
have been solved numerically for the dimensionless material
parameters (2.30) (excluding τ , of course) using the dsolve
routine in Maple 10 and the results can be seen in figure 3.
The solutions for θ and δ have been plotted in figure 3(a)
where it can be seen that they appear to be very close to
each other over most of the sample and are both close to
zero across the centre of the sample: this indicates that their
alignment away from the boundaries is close to the idealized
SmA bookshelf geometry when they are sufficiently far away
from the boundaries. There is evidently a boundary layer in
close proximity to each boundary where θ and δ differ greatly
from zero as they adjust to satisfy their boundary conditions.
Further, there is a significant separation between θ and δ in
a region near each boundary. This separation shows that the
smectic layers are bending in such a region and that the director
is also considerably tilted relative to the layer normal. The
inset in figure 3(a) shows the separation close to the boundary
at z̄ = 0 while figure 3(b) shows the same solutions plotted, for
emphasis, against a log scale over the domain 0.01 � z̄ � d̄/2.
Similar to the situation reported in [10], it is apparent that
there are really two boundary layer effects: the first boundary
layer occurs as the director and layer normal reorient within
a short distance from the boundary in an attempt to become
mutually parallel (where θ � δ): this demonstrates that the
sample strives to adopt the idealized SmA phase as close to
the boundary as possible. The second boundary layer effect
occurs as the smectic layers themselves adjust as they in turn
attempt to adopt a bookshelf SmA structure across the bulk
of the sample. This phenomenon takes place over a much
larger distance than that for which n and a initially reorient in
their attempt to be coincident; both distances are, nevertheless,
relatively small compared to the sample depth d̄ and occur over
length scales that are comparable to those reported in [10].
For example, when expressed in the original units, the first
reorientation effect occurs over an approximate distance of 50–
100 Å, which compares favourably with the experimental data
reported by Chen et al [19] for a ferroelectric smectic liquid
crystal. The smectic layer reorientation that happens in the
second boundary layer occurs over a length of order 0.4 μm,
and this is of the same order of magnitude as that observed
experimentally by Elston [1] and Bonvent et al [20].

Figure 3. Solutions to equations (2.26) and (2.27) with the boundary
conditions (2.31) and (2.33) for θ and δ plotted for strong anchoring
of the director on the boundary at θ0 ≡ θp = π/6 and the other
parameters as indicated. (a) The full solutions on [0, d̄]. These
solutions appear to almost coincide over [0, d̄]. The inset graph
shows that the peak of the separation between θ and δ occurs near the
boundary. (b) The solutions in (a) over a log scale on [0.01, d̄/2],
highlighting the separation between θ and δ near the boundary at
z̄ = 0. (c) The effect of increasing the coupling constant B from
unity (in (b)) to 10.

A major point to note about the plots in figure 3 is that
θ0 has been fixed at θp while δ0 on the boundary has to be
determined and, unlike θ0, will vary as the material parameters
change. For example, if B is increased and the remaining
constants are unaltered, which means that B1 becomes larger,
then δ0 shifts closer to θ0, as shown in figure 3(c) where
B = 10 has been adopted. This is as expected because the
magnitude of B1 is a measure of the strength of the coupling
between n and a: larger values of B should signify a reduction
in the value of |δ(z) − θ(z)|. This difference when evaluated
at the boundary provides a good indication of the impact that
changing the parameters will have throughout the sample. The
difference at the boundary is best expressed by considering
the calculated values of the natural boundary condition δ0

(determined from the full solution for δ(z̄)) as key material
parameters vary while θ0 has been fixed, as is demonstrated by
the plots presented in figure 4 where the material parameters,
except for that which varies, are as indicated in the figure.
For the typical material parameters shown in the figure, we
allow only the dimensionless parameter κ = K a

1 /K n
1 to

vary in figure 4(a) in order to observe the dependence of δ0

upon κ . As κ increases through unity, the elastic constant
K a

1 becomes dominant and δ0 decreases, which reflects the
dominance of the bookshelf layer alignment. This shows
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Figure 4. Solutions for the natural boundary condition δ0 (obtained
from the full solutions) plotted for the indicated parameters with
strong anchoring of the director on the boundary set to
θ0 = π/6 ≈ 0.524. (a) The dependence of δ0 upon the dimensionless
parameter κ = K a

1 /K n
1 with B = 1. (b) The dependence of δ0 upon

the dimensionless parameter B = B1/B0 with κ = 1.

that the bookshelf alignment becomes more prevalent near the
boundary, and therefore across more of the central bulk of
the sample, as K a

1 increases: this is as expected because this
layer bending elastic constant will dominate the director splay
constant K n

1 . In figure 4(b) only the parameter B varies. As
anticipated from the result in figure 3(b), as B increases, that
is, as B1 increases relative to B0, n and a attempt to be as
parallel to each other as possible and therefore δ0 strives to
coincide with θ0 at the boundary. Moreover, it is seen that
as B decreases the layer structure near the boundary will tend
towards the bookshelf structure since δ0 is decreasing; further,
as the coupling between n and a weakens and δ0 decreases, the
separation between θ0 and δ0 increases.

4. Solutions for weak anchoring

For weak anchoring of the director, equations (2.26) and (2.27)
have been solved numerically subject to the boundary
requirements (2.28). As an example, solutions have been found
for the typical material parameters in (2.30) and the results
are displayed in figure 5. The solutions for θ and δ virtually
coincide over most of the sample depth: however, as shown
in the inset in figure 5, there is a separation between these
solutions near the boundary. The separation in this particular
example is relatively small, but it does show that a boundary
layer effect is again to be anticipated and therefore further
solutions have been calculated for the same fixed material
parameters with the exception of the anchoring strength τ ,
which we allow to vary in order to determine the influence
of the anchoring strength. Figure 6 presents calculated
solutions for the parameters indicated in the figure for the
selected values of τ = 10−4, 10−3, 10−2, 10−1 and 1. As

Figure 5. Solutions to equations (2.26) and (2.27) for θ and δ subject
to the weak anchoring conditions in (2.28), plotted for the indicated
parameters. The effects of weak anchoring are prominent near the
boundary and are displayed in the inset.

Figure 6. Solutions to equations (2.26) and (2.27) for θ and δ subject
to the weak anchoring conditions in (2.28) plotted over the interval
[0.01, d̄/2] on a log scale for the indicated parameters. The pairs of
solutions for θ and δ correspond to the values of τ = 10−4, 10−3,
10−2, 10−1 and 1: as τ increases each pair of solutions
correspondingly increase near the boundary, as shown.

τ increases through these values, the corresponding pairs of
solutions, plotted in figure 6 on a log scale over [0.01, d̄/2] for
emphasis, evidently increase in magnitude near the boundary.
The solutions for τ = 10−3 (which have θ0 � δ0 ∼ 0.024
in figure 6) correspond to the particular solutions shown in
figure 5. It is clear from figure 6 that the separation of the
solutions θ(z̄) and δ(z̄) increases as τ increases and that both
θ0 and δ0 also increase accordingly. It is also readily seen from
figures 5 and 6 that there are boundary layer effects which
are analogous to those described in the previous Section for
strong anchoring. One striking observation is that the length
scales over which the boundary effects take place are similar
for both strong and weak anchoring. For example, we can
compare the results displayed in figure 3(b) (strong anchoring)
and figure 5 (weak anchoring), which have the same set of
dimensionless material parameters except for τ , which is finite
in figure 5. The main apparent differences are the magnitudes
of θ0 and δ0 and their relative separation at the boundary. Weak
anchoring conditions can vastly reduce these values compared
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Figure 7. The dependence of the boundary surface angles θ0 and δ0

upon the anchoring strength τ for the indicated values of B, κ , d̄
and θp.

to the preferred director alignment θp on the boundary. As the
anchoring strength τ increases, it is seen in figure 6 that θ0 is
attracted towards its preferred boundary alignment of θp while
δ0 adjusts to its natural boundary condition.

The above solutions, obtained numerically via Maple,
involved the determination of θ0 and δ0 as τ varied. Analogous
to the results in figure 4 above, it is of importance to examine
the boundary orientation angles and their dependence, not
on B or κ , but on the weak anchoring parameter τ so
that the influence of weak anchoring when other material
parameters are fixed can be seen. This will also allow a
comparison with the results for strong anchoring as τ increases.
Figure 7 shows the dependency of the boundary angles θ0

and δ0 as τ varies. For very weak anchoring, these angles
are both very close to each other and are relatively small
compared to the preferred surface alignment angle θp. Such
weak anchoring indicates that the preferred surface alignment
has little effect upon the orientation of the director or the
smectic layering and that the sample is close to achieving
a uniform bookshelf SmA alignment because both n and a
virtually coincide at the boundary and are almost parallel to
the boundary surfaces. Nevertheless, the non-zero preferred
surface alignment θp continues to influence the boundary
angles, although its persistent effect is reduced by weak
anchoring. It is further seen from figure 7 that as τ increases,
θ0 tends to its preferred boundary surface alignment θp while δ0

tends to its natural boundary condition that can be determined
under the assumption of strong anchoring. In this particular
example, it is seen in figure 7, for the indicated material
parameters, that δ0 tends to the value identified under the
strong anchoring assumption in figures 3(b), 4(a) (at κ = 1)
and 4(b) (at B = 1) where δ0 ≈ 0.39 rad. In other
words, as the dimensionless anchoring strength τ increases it
is clear from the numerical results that θ0 and δ0 tend to their
corresponding values obtained in the strong anchoring case.
Moreover, it is seen in figure 7 that the separation between
θ0 and δ0 on the boundary increases as the anchoring strength
increases.

5. Discussion

A mathematical model for the equilibrium profiles of SmA has
been investigated for samples that are close to a ‘bookshelf’
geometry. The bulk equilibrium equations are given by (2.26)
and (2.27) and are subject to the boundary conditions and
requirements (2.31) and (2.33) in the case of strong (infinite)
anchoring of the director at the boundary, and conditions (2.28)
under weak (finite) anchoring.

Strong anchoring formulations were derived and discussed
in section 3 and two boundary layer effects were identified
in the corresponding solutions: the first boundary layer
phenomenon occurred as the smectic layer normal and the
director attempted to coincide in a region very close to
the boundary; the second boundary layer effect showed
a reorienting of the smectic layers themselves towards an
idealized SmA bookshelf alignment. Such solutions were
plotted numerically in figure 3. The surface pretilt θ0 of
the director was fixed while the natural boundary value δ0

for the surface tilt of the smectic layers was calculated
numerically; its dependence on the dimensionless parameters
κ and B was displayed in figure 4. Comparisons with earlier
theoretical results [10] for prescribed δ0 were also made, in
addition to comparisons with the experimental work contained
in [1, 19, 20]. Strong anchoring in smectics with a variable
director tilt relative to the smectic layer normal has also been
discussed by McKay and Leslie [21] and McKay [22], who
also discussed a geometrical set-up similar to that in figure 2(b)
above. Despite some differences in the nonlinear smectic
energy density used, the mathematical approach for strong
anchoring employed in [21, 22] is similar in style to that
presented here.

The influence of weak anchoring was determined in
section 4 and solutions were obtained numerically to produce
the results in figures 5–7. Although the boundary layer effects
were similar to those discussed above for strong anchoring,
there were great differences in the determination, and values,
of θ0 and δ0 at the boundaries. The effects of weak anchoring
were most prominent near the boundary where the magnitude
of the anchoring strength τ controlled the magnitudes of θ0

and δ0 and their relative separation. The results in figure 7 are
particularly revealing in that they show how these boundary
values and their separation at the boundary depend upon τ .
Additionally, figure 7 shows that as τ increases we recover the
boundary conditions that were identified in figures 3(b) and 4
in the strong anchoring case.

As reviewed by Handschy and Clark [23], general surface
and smectic layer tilt conditions in ferroelectric SmC liquid
crystals (in which the smectic layers are close to a bookshelf
alignment) can be quite complex and may possess significant
coupling effects between the orientation angle φ, introduced
in figure 1, and the smectic layer tilt at the boundary. Such
coupling has been neglected here. However, the solutions
described in sections 3 and 4 above exhibit SmC behaviour
near the boundary and it may well be the case that a
more intricate structure for the layer tilt at the boundaries
is available, one that also varies along the x-direction (see
especially figure 19 in [23]). This would also involve
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director and layer orientations that would then have complex
dependency on x and z while the complete structure would be
uniform in the y-direction. Other more sophisticated boundary
conditions (such as circular boundary conditions) can also be
envisaged [23] and could be investigated in the cases of strong
and weak anchoring. In many of these instances there will
be a surface twist of the director in addition to the surface
tilt that is described here. Recent work on weak anchoring
for surface twist with no director tilt has been carried out
on nematics by McKay et al [24], based on the work of
Rapini–Papoular [14] and Belyakov et al [25], and these
results will provide motivation for examining the problems
discussed here in the context of more involved boundary
phenomena. Although the aforementioned details are in the
context of ferroelectric smectics, they are directly relevant to
the understanding of the induced SmC phase discussed here for
SmA samples. General discussions on weak director anchoring
that incorporate the Rapini–Papoular form (2.2) as a special
case can be found in Yokoyama and van Sprang [17] and Zhao
et al [26]. Future work could also look at mixed boundary
conditions that would destroy the symmetry assumptions made
in the solutions presented above, for example, strong anchoring
could be imposed on one boundary and weak anchoring at the
other.

Distortions or perturbations to any of the SmA alignments
discussed here may be possible via the application of
an externally applied electric or magnetic field across the
boundary plates. This would entail the addition of a magnetic
or electric energy density to that stated in equation (2.1).
In nematic liquid crystals it is known that if the director is
pretilted under strong anchoring conditions then there is a
constant equilibrium configuration (θ ≡ θp) that is available
when no field is applied and that this alignment will always
be distorted for any non-zero field magnitude, although it is
not readily detectable until the field magnitude is sufficiently
large (see [3, section 3.4.2] for details). A similar scenario in
terms of the static solutions presented here will form the basis
of future work, especially in relation to the stability of these
structures and their responses to arbitrary small fluctuations:
infinite samples of SmA are known to be dynamically stable
to periodic time-dependent perturbations in both the classical
case (n ≡ a [12]) and for the model presented above
(where n �≡ a [9]) and a similar analysis remains to be
tackled for the bookshelf and other confined geometries of
SmA. In the context of electric field effects in confined
lamellar systems the recent paper by Senyuk et al [27] has
revealed some spectacular effects that have been investigated in
three dimensions using the technique of fluorescence confocal
polarizing microscopy (FCPM) [28]. Threshold and post-

threshold phenomena such as layer undulations and buckling
have been reported and the experimental observations just
above a critical electric field magnitude near the boundary of a
cell with weak anchoring in figure 8(b) in [27] will be of direct
relevance to the work in this present paper once an electric
energy density has been incorporated into the model. Layer
undulations, layer tilting and buckling are the next natural
phenomena to be investigated theoretically as extensions to the
mathematical model presented here.
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